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ABSTRACT

Purpose:

Because of the inherent stability of endothelial cells and the importance of this cell type for the
proliferation of both localized and disseminated cancers, anti-angiogenic therapy is an attractive
target for the investigation and further development of novel therapeutic approaches to cancer
metastasis. The purpose of this proposal is to assess molecular mechanisms underlying synergy
between squalamine and vascular endothelial growth factors (VEGF).

Scope:

Angiogenic modifier including VEGF and withdrawal of androgen were used to “injure” the
endothelial cells in an effort to enhance squalamine induced tumor shrinkage in animal models of
human prostate cancer. The cellular mechanisms underlying tumor cell death in these models
will be evaluated.

Major Findings/Progress:

We have completed in vitro studies to show synergism between squalamine and VEGF in
promoting the death of human prostate cancer cell lines. This synergism appears to be dependent
upon the prostate cancer cell background in which LNCaP and C4-2 but not PC-3 and DU-145
cells are highly sensitive to squalamine-VEGF synergy in inducing cell kill. This synergistic
action between squalamine and VEGF appears to interfere with the ability of VEGF to stimulate
prostate cell attachment to substratum, laminin. Our next goal is to find out the particular
downstream pathway that mediates extracellular matrix-intracellular signaling cascade that may
be the underlying molecular mechanism that triggers squalamine-VEGF synergism, thus causing
human prostate cancer cell death in vitro. We have confirmed such synergism in vivo in two
tumor models: 1) the LNCaP prostate cancer progression model and 2) CWR22 model.

Subject Terms:

Prostate cancer metastasis, angiogenic modifiers, squalamine, vascular endothelial growth factor
or VEGF, animal model for prostate cancer, cell death or apoptosis

Introduction:

Cancer growth requires the supply of oxygen and nutrients. Although endothelial cells are
responsible for forming new vasculatures for the delivery of oxygen and nutrients and removal of
metabolic waste from tumors, it becomes apparent that similar molecular mechanisms may be
operating between endothelial and tumor cells.

Body:

The emphasis of the current proposal is three fold. First, we propose to extend our in vitro
observations of squalamine-VEGF synergism to the in vivo mouse model of human prostate
cancer using both LNCaP progression and CWR22 models to evaluate if androgen-independent
progression of such models may be affected by the administration of squalamine in castrated
mice. Second, we propose to evaluate the cellular response of prostate cancer cells to VEGF and
squalamine, focusing on the cytoskeletal organization changes in response to squalamine and




VEGF. Possible alterations of cell surface integrin isotypes that may modify integrin-matrix
interaction will also be evaluated. Third, we propose to evaluate the downstream intracellular
signaling pathways that may be altered by squalamine and/or VEGF. A comparative study will
be conducted to evaluate signal transduction in LNCaP progression model and the androgen-
independent DU-145 and PC-3 cells. Signal cascade through the VEGF receptor, focal adhesion
kinases, FAK, Pyk2, and MAP kinase associated ERK and JNK pathways will be studied in
relation to apoptosis of prostate cancer and endothelial cells in vitro.

Key Research Accomplishments

e We have observed synergy between VEGF and squalamine in vitro in cultured human
prostate cancer cell lines. Results of these studies indicated that such synergism may be cell
background dependent. For example, LNCaP and C4-2 but not PC-3 or DU-145 cells are
highly sensitive to squalamine-VEGF synergy in cell kill in vitro. This cell kill appears to be
dependent upon VEGF elicited downstream cell signaling, because such synergism can be
effectively blocked by the co-presence of VEGF antibody.

e We have evaluated squalamine effect in animal models by the application of another
angiogenic modifier, the removal of testicular androgen through castration, which enhances
the destruction of endothelial cells. Using both LNCaP and CWR22 models, we have
observed the synergism between castration and squalamine, which caused remarkable cell
death and tumor shrinkage in these models. We found that such synergism between
squalamine and castration only occurred if animals were castrated early, rather than later,
upon squalamine application.

These results together imply that at the time of castration, squalamine could have a beneficial
effect in causing accelerated tumor cell death in patients with androgen-independent prostate

cancer.

Reportable Outcomes:

e A review entitled, “Targeting angiogenic pathways involving tumor-stroma interaction to
treat advanced human prostate cancer” has been published by Sokoloff and Chung, Cancer
and Metastasis Review, 17(4):307-15, 1999.

e A review on molecular mechanism of cotargeting tumor stroma and epithelium has been
accepted for publication in J. of Cellular Biochemistry, 2001.

Both of these references are attached with this report.

Conclusions:

e Synergism between squalamine and VEGF was demonstrated in selective prostate cancer cell
lines.

e Vascular endothelial cell destruction in castrated animals can be applied as an additional
angiogenic modifier to synergize with squalamine-induced tumor cell kill. The “timing” of
squalamine application is extremely important, and is highly effective at the time of
castration when vascular endothelial cell destruction is maximized, inducing tumor cell death
in both LNCaP progression and CWR22 human prostate tumor models.
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Legends and Figures

Figure I — Synergism between squalamine and VEGF was found in selective prostate cancer cell
lines in vitro. LNCaP and its androgen-independent C4-2 derivative were highly sensitive to this
synergistic interaction between VEGF and squalamine, whereas the androgen-independent PC-3
and DU-145 cells were not.

Figure 2 — Squalamine application to animals castrated early was shown to be highly effective in
eliminating the growth of LNCaP tumors in vivo. Squalamine appeared to be highly effective
only when it was applied immediately after castration in animals bearing LNCaP tumor in vivo.

Figure 3 — Synergistic interaction between squalamine and castration was also noted in CWR22
model where squalamine application at the time of castration eliminated the growth of CWR22
tumors in animals (panel A). Although the tumor volume appears to decrease upon the treatment
by squalamine, the tumor appears to persist because of the secretion of serum PSA in this model
(panel B).

These results indicate that it is also possible that squalamine may induce prostate cancer
differentiation by promoting PSA synthesis and production in CWR22 models.

Appendices:
L Figure 1

1. Figure 2
.  Figure3

IV.  Sokoloff M and Chung LWK. Targeting angiogenic pathways involving tumor-stroma
interaction to treat advanced human prostate cancer. Cancer & Metastasis Reviews.
17(4):307-15, 1999. '

V. Yeung F and Chung LWKC. Molecular Basis of Co-targeting Prostate Tumor and
Stroma. J. Cell Biochemistry 2001 (In Press)
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Abstract

Hormone-refractory prostate cancer is one of leading cause of cancer death in
Nortﬁem American men. The lethal pﬁenotypes of human prostate can'éer are
‘ characterized by progression to and:bgen—indepeﬁdence (AD) and a propensity to form
osseous metastases. In ~80% ‘of cases, prostate cancer colonizes bone and elicits a
characteristic osteoblastic reaction. The bone metastases are initially sensitive to
androgen deprivation treatments, but with time the cancer will eventually progress into an
Al stage for which there is currently no effective treatment. Once initial horménal
therapy has failed, median survival of prostate cancer patients with bone metastases is
less than 1 year (Tu, et al. 2001). Novel therapeutic and preventive strategies-are needed
to decrease morbidity and mortality of this disease.

In this review, we describe a novel gene therapy strategy in which ﬁssue-speciﬁc

and tumor-restrictive promoters are employed to drive the expression of therapeutic

genes to co-target both the stromal and epithelial compartments in the treatment of

prostate cancer bone metastases (Matsubara, et al. 2001). - The rationale behind this
' strategy- is based on the evidence that reciprocal stromal-epithelial interactions are
important for prostate tumnorigenesis and that the osteomimetic properties of prostate.
cancer cells contribute to préstate cancer progression (Koeneman, et al. 1999).
Regulation of tissue-specific and/or tumor-restrictive promoters, prostate-specific
antigens and human osteocalcin, in androgen-independent bone metastatic prostate
cancer cells.

Despite the common occurrence of prostate cancer, little is known about the

underlying mechanisms responsible for prostate cancer growth, androgen-independent




progression, and acquisition of bone metastatic potential. To gain new insights into the
molecular mechanisms of AI progression, our lab focused on defining the transcriptional
regulation of human osteocalcin (hOC) and?rostate specific antigen (PSA) expi-éssions
A in AT prostate cancer cell lines. A strategy was. outlined to identify the transcription
factors involved in regulating the critical regions of the promoters of these genes, and
their roles in turnorigenesis (Yeung, et al. 2000; Yeung, et al. 2001). The ultimately goal
of our study is to devise strategies for expressing therapeutic genes; under the control of
tissue-specific promoters té treat prostate cancer bone metastasis effectively.

PSA. Due to its tissue-specific expressiori pattern, PSA is the most widely used
serum marker for the diagnosis and management of prostate cancer. Since the expression
of PSA is tightly regulated by androgen, an increase in serum PSA in androgen-depleted
patients could indicate the development AI tumors. In addition to being dysregulated
during cancer progression, PSA, a serine protease, is believed to contribute significantly
at the molecular level to prostate cancer progression and metastasis via its protease
activity. For example, the cleavage of IGFBP [Cohen et al., 1992] and TGFB by PSA
could increase the bioavailabi]ity' of the mitogen IGF; and activating the latent form of
growth factor TGFp, enhanéing matrix turnovef, ."tumor angiogenesis and immuné
evasiveness. Moreover, the inactivation of PTHP by PSA [Cramer et al., 1996] could tip ‘
the balance toward osteoblastic reactions in prostate cancer bone metastasis.

PSA is one of the most widely studied prostate genes. Numerous groups focused
* on the androgen regulation of PSA havev identified several androgen-responsive elements
(AREs) [Cleutjens et al., 1996; Huang et al,, 1999] and a tissue-specific enhancer core

(AREc) [Cleutjens et al., 1997] in the promoter. To identify transcription factors that




activate PSA promoter independent of androgen, we performed promoter deletion studies
and identified two AI regulatory regions (AREc and pN/H), which suggested the
involvement of two distinct pathways iﬁpandrogen-independent regulation 6'f PSA
‘ expression in Al C4-2 cells [Yeung et al., 2000]. One pathway clearly involved androgen
receptor (AR) because the binding of AR to the AREs within the AREc appears to be pre-
requisite for the high activity of the AREc and PSA promoter in C4-2 cells. It is
plausible that AR is activated through growth factor mediated signaling pathways
independent of androgen. Growth factors like IGF-1, EGF and KGF were reported to
induce AR-medi‘ated gene transactivation in the absence of androgen [Culig et al., 1994].
These growth factors could signal through the PKA fNazamth and Weigel, 1996] and/or
PKC [Sadar, 1999] cascade in Whic.:h AR activity is enhanced either by modification of
AR itself [Ikonen et al.,, 1994] or by enhancing the interactions between AR and its
coactivators [Yeh et al, 1999]. The fact that AREc is highly tissue specific and co%tains
other cis-elements suggests [Cleutjens et al., 1997] that in addition to AR, other prostate
specific co-activators are also involved in the Al rggulaﬁon of AREc in C4-2 cells.
Acfivaiéd AR is one of the key transcription factors that interact with other prostate- |
specific transcription factor(s), and together they aésﬁciate with the AREc and assemble
into 2 highly active AREc enhanceosome complex [Huang et al., 1999] in C4-2 cells.
The aberrant activation of AR and/or it co-activators by growth factors could provide
growth advantage to cancer cells in an androgen-depleted environment, and this could be
one of the important mechanisms that contribute to prostate cancer progression.

The other pathway mediated by pN/H appears to involve an unknown 45-kDa

prostate specific transcription factor (p45). Through DNasel footprinting and linker-




scanning mutagenesis approaches, we showed that p45 binds to a 17 bp site (R]) in the

pN/H region and regulates the basal PSA promoter activity. Even though the RI element

shares high homology with the SP-1 consensus site, p45 migrates differently from '{he Sp-

1 transcription factors in EMSA, so it does not secem to belong to the Sp-1 transcription

factor family. Furthermore, the observed absence of RI-p45 complex in PC3 cells and a
higher amount of p45 complex in C4-2 than in LNCaP suggest that the expression of p45
is cell type-specific. Since the addition of androgen could not enhance pN/H activity,

p45 does not seem to be regulated by androgen or AR.. The fact that C4-2 nuclear extract

consistently showed a higher level of RI-p45 complex in EMSA implies that increased |

associqtion of p45 to Rl site is a possible mechanism by which PSA promoter is activated
in C4-2 cells 1n an AR and androgen independent manner [Yeung et al.,, 2000]. Further
efforts to identify p45 may provide additional information on the AI growth and
metastasis of prostate cancer cells. For example, P45‘ may regulate prostate cancer

growth by binding to the promoters of the growth-related genes that contain the RI cis-

.element. The identification of p45 could also be of great clinical significance. Since

there is a higher level of p45 in Al prostate cancer cells, new diagnostic approaches based
on screening for the level of p45 in tumor cells coﬁld provide valuable information for
staging the cancer and determining the progression and metastatic potential of the
disease.

hOC. Osteocalcin (OC) is one of the major non-collagenous bone matrix proteins

expressed in bone. OC expression is transcriptionally regulated by vitamin D and was

~ thought to be limited to cells of the osteoblast lineage. Many regulatory elements have

been mapped to the proximal region of the OC promoter. These include OSEI, OSE2




[ .

and AP-1/VDRE. OSE1 and OSE2 were first identified in mouse OC promoter and they
are associated with osteoblast-specific transcription factors, OSF1 and Runx2,

respectively. Vitamin D receptors were shown to bind the VDRE in the p;oximal

- promoter, and its activity is tightly regulated by the' members of the AP-1 family that bind

the contiguous AP-1 site. In proliferating osteoblasts, c-Fos and c-Jun heterodimers were
shown to block the binding of VDR and suppress the rat OC promoter activity, while the
expression of Fra2 and JunD in the post-proliferated osteoblasts induces rat OC promoter

activity by facilitating VDR/RXR binding [Lian et al., 1998].

Human prostate cancer cells with a propensity to metastasize to the skeleton and.

" prostate cancer tissue specimens with increased Gleason scores reveal that prostate

cancer cells synthesize, secrete and/or deposit large amounts of non-collagenous bone
matrix proteins such as OC, osteopontin (OPN), osteoprotegerin (OPG), osteonectin
(ON) and bone sialoprotein (BSP). In a recent study, we demonstrated that OC p;:g)tein
was prevalently cxpressed. in p;'ima.ry prostate cancer (85%), in prostate cancer lymph
node (100%) and in bone metastasis specimens (100%) [Chung and Zhau, 2001;
Matsubara, et al. 2001]." Since OC was not expressed in normal human prostate gland,

the predominant expression of OC and other bone matrix proteins in advanced prostate

cancer imply a role in prostate cancer survival and growth in the bone environment. OC

secreted by prostate cancer cells can complex with ECM and calcium, serving .as a
chemoattractant‘ for recruiting osteoblasts and/or osteoclasts, which initiate bone
remodeling [Glowacki and Lian, 1987]. This may contribute to the oéteotrophic
;:haiacteﬁsﬁcs of prostate cancer bone metastasis. The discovery of hOC expression in

prostate cancer specimens has opened new windows on biology and therapy of prostate




cancer bone metastasis. In an effort to understand the osteomimetic properties of prostate
cancer cells, we used PC3 cells to investigate the regulation of OC expression. PC3 cells

are Al, obtained from bone metastatic lesions of a prostate cancer patient. PC3 cells

_share with mature osteoblasts the unique feature of synthesizing and depositing a large

amount of OC. In our study, we demonstrated three groups of transcription factors,
Runx?2, JunD/Fra-2 and Sp-1, responsible for the high hOC promoter activity in PC3 cells
by binding to the OSE2, AP-1/VDRE and OSE1 elements, respectively. Furthermore, the
functional hierarchy of OSE1, OSE2 and AP-1/VDRE was established in the regulation
of hOC promoter activity (OSE1>AP-1/VDRE>0SE2) m PC3 cells. We also generated
an artificial hOC promoter consisting of dimers of the three elements with significantly
higher activity than the wild type promoter. Among the three groups of transcription
factors, the expression levels of Runx2 and Fra-2 are higher in the OC-positive PC3 cells
and osteoblasts, compared to the OC-negative LNCaP cells. Interestingly, unhke the
mouse OC promoter, the OSE1 site in hOC promoter is regulated by the members of Sp-1
family instead the osteoblast specific factor, Osfl [Yeung, et al. 2001]. Therefore, by
expressing the osteoblast-specific .trans.cription factor Runx2 and diﬁ'eféntially up-
regulating the prominent Ap-1 factor, Fra2, in méture osteoblasts, PC3 cells have
acquired the phenotypes of osteoblasts, The interplay and coordination among these
transcription factors provides the molecular basis for Al prostate cancer cells behaving
like inature osteoblasts. The balance and activity of these transcription factors is
significant in conferring the osteolytic/osteoblastic phenotype of prostate cancer cells

frequently observed in metastatic skeletal lesions.




Osteoblast-specific transcription factors and prostate cancer bone metastasis

Besides OC, the expression of other bone matrix proteins such as OPG, OPN,
BSP was also found in bone met prostate 6;§1cer cells. It appéars that a switch .c')f gene
. transcription occurs in prostate cancer bone meMs that allows the cancer cells to
acquire an osteoblast phenotype and presumably leads to their colonization in the

skeleton. The roles of these bone matrix proteins are unclear, but based on their

functions in bone development and remodeling, one can postulate that OPN expression in -

prostate cancer cells could facilitate their adhesion and migration [Denhardt et al., 2001]
to the bone matrix and participate in subsequent bone “pitting” and steps involved in

osteoid mineralization. Since BSP has been shown to be crucial for the expression of

osteoblastic phenotypes in cultured bone marrow cells [Mizuno et al, 2000],

overexpression of BSP by metastatic prostate cancer cells could enhance their attachment
to osteoblasts and osteoclasts and stimulate osteoblast differentiation. The express_ign of
OPG in prostate cancer cells may lead to the overall repression of osteoclast activity and
a shift of bone rer;:lodeling toward osteobiast activity in bone metastasis [Simonet et al.,
1997]. Therefore, the osteomimetic properties of prost-ate' cancer cells in theory could
allow them to invade, adhere, survive and grow befter in the bone microenvironment
[Koeneman et al., 1999]. Recent study usiﬁg the osteotropic prostate cancer cells (C4-
2B) demonstrated that in additi;)n to havigg an osteoblasﬁc phenotype, C4-2B cells could
produce hydroxyapatite mmeral in vitro; and stimulate osteoblasts to initiate
mineralization in the bone [Lin et al.,, 2001]. The increased expression of bone matrix

proteins by prostate cancer cells in skeletal metastatic sites may underlie the predilection




of prostate cancer for bone and explain the mineral formation found in osteoblastic
lesions.
Even though tumor metastases in paﬁ%nts with prostate cancer are predonﬁnanﬂy
‘ osteoblastic, evidence from osteoblastic metastasis‘ animal model indicates that an initial
phase of bone resorption precedes new bone formation [Yi et al,, 2000]. The importance
of osteoclast activity in osteoblastic metastasis was further supported by recent findings
that bisphosphonates (an inhibitor of osteoclast activity) could effectively alleviate bone
pain in patients with metastatic prostate cancer [Adami, 1997]. Since bone is an
~abundant source: of growth factors such as TGFB, bFGF, IGFs, PDGFs, and BMPs,
osteoclastic bone resorption could release and/or activate. growth factors from the bone
matrix, which could serve as paracrine mediators to stimulate tumor growth [Nakase et
al., 1994]. Conceivably, prostate cancer cells Eould modify the bone microenvironmenf
in a reciprocal manner by secreting soluble factors to promote osteoclasts activity, which
in turn ﬁakes the bone stroma cox.zduc.iv.e for the érowth énd survival of prostate can;er
cells. Therefore, the reciprocal interactions between prostate cancer cells and their
supporting stroma are essential in promoﬁng cancer progression, invasion and metastasis.
Fra2 is one of the transcription factors that inéy be involved in bone metastasis.
We showed that a higher level of Fra2 was found in Al bone metastatic prostate cancer
cells compared to non-tumorigenic LNCaP prostate cancer cells. It is not clear how Fra2
is upregulated in prostate cancer cells. However, growth factor like TGFP was known to
increase the expression and activity of AP-1 factors. 'I'he binding of TGFp to its cell
surface receptor could trigger a cascade of signaling pathways, including the MAPK

pathways. MAPK pathways were indicated to regulate both the amounts and
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transactivating activity of the AP-1 factors in a stimulus-specific manner. As an
oncoprotein, high level of Fra2 could éontribute in numerous ways to increase
proliferation, invasion and metastasis of cancer cells during disease progressio;'l. For

_example, over expression of Fra2 reportedly- répresses the tissue inhibitor of
metalloproteinases (TIMP1) promoter activity by forming heterodimers with JunD, which
are less active than JunD homodimers [Smart et .al., 2001]. The repression of TIMP1
could allow the accumulation of MMPs and lead to increased invasiveness of the tumor.
Furthermore, avian primary cells transformed by Jun/Fra2 shov“red increased anchorage
independent growth by their ability to form colonies in soft agar [van Dam et al, 1998].
Therefore, these results are consistent with the notion that enhanced leve] of Jun/Fra2
confers cell motility and invasiveness.

Runx?2 is an osteoblast-specific factor highly expressed in the bone metastatic
prostate cancer cells. The expression of this osteoblast-specific factor is believgt_‘i not
only to impart the osteomimetic characteristics of prostate cancer cells, but it also has a
significant role in carcinogenesis. BMPs 'é.nd TGFP are two of the growth factors shown
to activate the transcription of Runx2 in bone cells [Bae et al., 2001]. As a member of
the TGFB family, BMPs are known to bind receptdrs;‘ and to induce a cascade of events
leading to phosphorylation of Smad proteins. Upon phosphorylation, Smad translocate
into the nucleus to interact with numerous transcription factors, which then regulate gene
expression. Smad5 is believed to be respomsible for activating the .Runx2 gene
transcription [Bae et al., 2001]. Other local factors such as hedgehogs [Yamaguchi et al.,
2000] and IGF-1 [Yeh et al., 1997] Were shown to synergistically enhance BMPs actions.

For example, recombinant Shh and conditioned media collected from Shh-or Ihh-
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overexpressing chicken embryonic fibroblasts can increase BMP2, which induces the
downstream OC mRNA level [Kinto et al,, 1997]. Therefore, hedgehog-signaling
pathway may act cooperatively with the i§MP .signaling' pathway in regulat'i'ng the
* transcription of Runx?. -

Some of the early gene targets of BMP signaling pathway include the N- and E-
cadherins. Recombinant human BMP-2 (thBMP2) rapidly and transiently increases N-
and E-cadherin mRNA. and protein levels in human osteoblasts. In addition, the N- and
E-cadherin antibodies have inhibitory effects on both the basal and induced Runx2
mRNA levels, and abolish the thMP2—induced.OC mRNA levels [I-iay et .al., 2000].
The importance of cell-matrix interaction in the regulation of Runx2 expfession is further
demonstrated by the fact that oc2-integrin-collagen interaction is required for activation of
Runx2 and induction of osteoblast—speciﬁc gene expression. Induction of matrix

synthesis is accompanied by a dramatic increased in the binding of Runx2 to OSE2,

sﬁggesting that ECM synthesis up-regulates and/or activates Runx2, Furthermore,

blocking of integrin-type I collagen binding prevents activation of the OC promoter by

ascorbic acid and suppresses binding of Runx2 to OSE2 site [Xiao et al., 1998];. It is not

clear how ECM activates Runx2; it is possible that a post-translational pathway or

accessory factor(s) are involved in the regulation. Like the AP-1 factors, the MAPK
pathway also regulates Runx2. An activated recombinant MAPK was shown to
phosphorylate a Runx2 fusion protein in vitro [Xiao et al., 2000]. Therefore, the
phosphorylation of Runx2 through the MAPK pathway is essential for responsiveness of

osteoblasts to ECM signals and contributes for osteoblast-specific gene expression




12

Evidence from tooth development study indicated that Runx2 regulates key
epithelial-mesenchymal interactions that control advancing morphogenesis and

differentiation of the epithelium. Runx2 e'ipression in the mesenchyme is int'i'mately

associated with epithelial-mesenchymal interactions during tooth development and is

affected by epithelial signals. Runx2 expression in the mesenchymal is controlled by
signals emanating from the epithelium. In turn Runx2 regulates the expression of
mesenchymal molecules that act reciprocally on epithelium to control the differentiation

of the enamal organ [D'Souza et al., 1999]. It is plausible that the growth factors releasel

 from the bone matrix upregulate the expression of Runx2 in prostate cancer cells, as a

result triggering a “ping-pong” mechanism (Fig 1) in which the high level of Runx2

allows expression of gene products in the cancer cells that could modify the surrounding
stroma and eventually lead to enhance tumor growth.

Potential use of tissue-specific and tumor-restrictive promoters in co-targeting stromal-epithelial

interactions in prostate cancer.

Due to the poor response rate of preﬁously treated patients with relapsed prostate
cancer to convéntional radiotherapy, surgery, or chemc;therapy, our laboratory has
examined some of the unique biological characteristics associated with prostate cancer
and its relationship with prostate or bone stromal cells in the effort to formulate novel
targeting strategies. Traditional therapy for prostate cancer has targeted only the
malignant epithelial cell. Because of the osteomimetic properties of prostate tumor
epithelial cells in bone, we proposed a novel co-targeting strategy incorporatipg an
adenoviral gene therapy approach to the treatment of both localized and metastatic

prostate cancers. This approach involves the use of bone matrix protein promoters, such
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as OC to drive the expression of therapeutic genes co-targeting tumor epithelium and its
supporting stroma to maximize tumor cell-kill.

Gene therapy is ; newly develope"c‘l technology based on understand.i'ng the
genetic and molecular defect of disease. In dea]i-ng-with cancer, toxic gene therapy is
most commonly employed clinically. This kind of therapy involves suicide gene/prodrug
systems, in which a suicide gene is delivered to cancer cells to activate a non-toxic
prodrug in cells and thus selectively kill the tumor cells while sparing surrounding
normal cells from tissue damage. |

The concept of delivery and expression of therapeutic genes to tumor cells
through the use 6f tissue-specific promoters has been well recognized. " This approach
decreases the adverse effects of the therapeutic genes on normal cells and increases the
specificity and efficiency of gene transfer to tumor cells. Attractive approaches for the
treatment of bone metastasis could be developed through our understanding of the
molecular mechanism underlying the acquisition of osteomimetic properties by prostate
cancer cells. The discovery of commén bone matrix proteins synthesized by both
prostate cancer cells and osteoblast cells, raise the possibiliiy of employing the promoters
of these prot;:ins to drive the expression of therapeliﬁc genes in both prostate cancer and
bone stromal compartments for therapeutic gains. In this context, our laboratory has
developed an OC-based thic gene therapies for the treatment of prostate cancer
metastasis. We envision the use of OC promoter to drive the expression of therapeutic
genes m proliferative cellular compartments to eradicate the growth of both prostate
cancer cells and their supporting stroma. This approach could achieve a higher degree of

efficacy than the conventional approaches of blocking bone proliferation by
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bisphosphonate or halting the growth of prostate cancer cells with non-selective
chemotherapeutic agénts or radiation. The effectiveness of this form of gene therapy can
be explained by the uniqueness of the oE‘: promoter, which presumably drives the
expression of toxic genes in at least three cellular c;omparlznents: tumor epithelium, bone
stroma, and vascular endothelial pericytes (Chung and Zhau, 2001). The rationale for co-
targeting bone stroma and epithelium was supported by our preliminary data showing that |
the growth of prostate cancer cells was enhanced when they were co-cultured with bone
stroma cel]s; The de.structiqn of bone stromal cells alone Waé sufficient for killing the co-
cultured prostate- cancer cells. Fu:thc;rmoré, a recent study by Tu et al [Tu et al., 2001]
demonstrated that bone targeting with chemoinduction plus Strontium 89 (Sr89)
significantly improved patient survival in comparison to Sr89 or chemoinduction alone.
The improved survival of patients subjected to co-targeting of bone stroma and
epithelium by chemoinduction and Sr89 dramétizes the advantages of co-targeting, and
supports our strategy of co-targeting tumor epithelium and bone siroma by gene therapy,
which could eventually result in impro*red survival of patients with metastatic bone
disease.
Summary

The study of tissue-specific pfomoters such as PSA and hOC in Al prostate
cancer cells has led to the identification of some of the transcription factors (AR, p45,
Runx2, and Fra2) that are dysregulated during cancer progression. Although the roles of
these transcription factors in tumorigenesis are unclear, it is feasible to use approaches
like ribozyme and antisense to block the expression of these .transcription factors and

determine their respective effects on tumor growth and invasion. Once the functions are
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established, we believe effective strategy employing tissue-specific and tumor-specific
promoters to control gene expression in selective cell types could be designed to target
these transcription factors for cancer gene thé;‘apy. - |

In the past few years, our laboratory has suc;ceésfuﬂy developed a human prostate
cancer skeletal metast;cxsis model for the study of the biology and therapeutic targeting
stromal-epithelial interactions. We believe the inter- and intra-cellular communication
loops between prostate epithelium and its supporting stroma provide additional attractive
therapeutic targets for prbstate cancer treatment. Resﬂfs from preliminary animal
experi_ments support the concept that maximum prostate tumor destruction may be
achieved by targeting both tumors and their supporting stroma compartments. The
development of bone matrix protein promoters;, such as OC, driving gene expression in
both prostate epitﬁelial and stromal compartments has allowed future explorations into
prostate cancer/stroma interactions and signal cascades involving growth factor/g_x_jpwth
factor receptor' and cell-matrix interactions. Since bone matrix proteins have been
implicated in prostate cancer progressio‘n',A OC promoter could be valuable for deﬁveﬁng
genes into both epithelium and stroma compartments to block the expressioﬁ/secretion of
critical factors that ;ﬁect the growth and survival of cancer cells in vivo. Refining our
und;arstanding of the regulation of PSA and bone matrix proteins in prostate cancer cells
at the molecular level could facilitate the future development of new molecular targets for

the prevention and treatment of not only prostate cancer skeletal metastasis but also

" localized and invasive prostate cancers.
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Figure 1. A “Ping-Pong” Mechanism of Transcription Factor Activation Through Stromal-

Epithelial Inter:.lction: Potential Contribﬁtors to Prostate Cancer Bone Metastasis. The

homeostasis of localized prostate tumor is maintained bnyI.m constant stimulation from -

the prostate stroma and growth factors released from ECMs WhiCh determines the proliferative and

differentiative status of tumor epithelium. At this stage, tumor epithelium is considered as

androgen-dependent and expressed low levels of OC transcription factors, RUNX2 and Fra2,and bone

patrix proteins, OC, OPN, BSP and ON. Upon prostate cancer progression to androgen-independent and

" metastatic state (such as bone metastasis), a surge of intracellular autocrine and paracrine growth factor
signaling resulﬁ in an elevation of OC transcﬁption factor activity (e.g. incfeased RUNX2 and Fra2) and
elevated level of OC, BSP,. OPN and ON. The enhanced RUNX2 and Fraz is ;esponsible for an overall

. stimulati‘on of osteoblast proliferation, which then supports tumor growth and survival in the skeletoﬁ
through greatly increased autocrine and paracrine loops.‘ The co-targeting concept is building upon the
observation of incrqased osteomimetic properties by Al and metastatic prostate cancer cells so that

replication-competent Ad vectors can be designed to exert cytotoxic effects on both tumor epithelia,l‘ and

bone stromal cell compartments.
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Abstract

Interfering with and preventing tumor angiogenesis is an attractive therapeutic approach for treating cancer metas-
tases. This commentary presents treatment strategies that may enhance the effectiveness of anti-angiogenic therapy
by selectively targeting newly sprouting and immature vessels, inhibiting the production of angiogenic factors, and
disrupting extracellular matrices. We propose several clinical paradigms, including hormonal ablation, intermittent
androgen suppression, chemotherapy, and radiation therapy, that ‘injure’ nascent vasculature and interrupt the cancer
cell-stromal relationship, thereby potentiating the efficacy of experimental anti-angiogenic agents. These stromal—
epithelial interactions play an important role in the development, proliferation and dissemination of prostate cancer,
as well as guiding the processes of tumor neovascularization. Successful utilization and targeting of tumor angio-
genesis requires an increased understanding of tumor cell-stromal cell-endothelial cell relationships, most notably
the intricate intracellular signalling cascades mediated by growth factors and the extracellular matnx

Introduction

Despite advances in prevention and early detection,
refinements in surgical technique, and improvements
in adjuvant radio- and chemotherapy, the ability to cure
many men with prostate cancer remains elusive. This
is especially apropos to the successful management of .
metastatic and recurrent hormone-refractory disease.
Clinjcal protocols using either androgen deprivation
therapy or chemotherapeutic agents have shown some
promise in treating advanced prostate cancer [1,2].
Unfortunately, the proportion and durability of com-
plete remissions have been limited and new therapeutic
approaches are desperately needed.
Stromal-epithelial interactions are paramount to
the development, proliferation, and spread of prostate
cancer. Studies in our laboratory have established
that a bi-directional relationship between tumor cells
and their surrounding stroma contributes to the
growth and dissemination of prostate cancer [3-5].
These mesenchymal-epithelial interactions are respon-
sible for maintaining the functional integrity of the

normal adult prostate gland. Irregularities in the con-
stituents of the stromal—epithelial milieu or aberrations
in their interactions can induce géhomic instabil-
ity, enhance tumor cell proliferation, and drive both
metastatic spread and progression to a hormone-
refractory state. Consequently, novel therapeutic pro-
tocols are being developed that target not only prostate
tumor epithelial components, but surrounding stro-
mal and extracellular matrix (ECM) elements as
well.

For a prostate cancer to grow and metastasize,
endothelial cells from this surrounding stroma must
be recruited to form an endogenous microcirculation
to support the developing neoplastic mass [6,7]. Sim-
ilar angiogenic processes are necessary at sites of
metastasis if disseminated tumor cells are to become
securely entrenched and, subsequently, propagate.
Although prostate cancer cells produce inherent pro-
angiogenic signals, integration of downstream signal-
ing involving soluble factors and stromal and ECM
components are critical to promoting and maintaining
neovascularization [8].




Stromal-epithelial cell injury may potentiate
anti-angiogenic therapy

We have recently demonstrated that squalamine,
an anti-angiogenic sterol isolated from shark liver,
has potent anti-prostate cancer activity [11]. When
squalamine was applied concomitantly with andro-
gen withdrawal in a human prostate cancer xenograft
.model, an absolute and lasting eradication of both
PSA and subcutaneous tumors was achieved. No such
result was observed in intact tumor-bearing animals
or in tumor-bearing animals treated with squalamine
post-castration, yet subsequent to the appearance of
androgen independent lesions. Immunohistochemical
staining of responding and non-responding tumors
indicated that combined squalamine and castra-
tion substantially diminished integrin o, f; expres-
sion. Additional histologic data established that
squalamine’s actions were most potent in preventing
proliferation of the freshly sprouting, phenotypically
imrhature blood vessels that, we believe, emerge in
the tumor tissue as it acquires hormone independence.
This finding corroborated prior studies which have
determined that squalamine’s efficacy is significantly
enhanced when tumor vasculature and cancer cells
are ‘injured’ immediately antecedent to its apphcauon
[12,13].

Accordingly, we have developed two theories to
explain the powerful anti-angiogenic as well as anti-
prostate cancer effects of coincident androgen abla-
tion and squalamine administration. First, androgen
deprivation, may so effectively ‘stun’ the stromal-
epithelial environment that normally prevalcnt and
active pro-angiogenic factors are diminished, inac-
tivated, or eradicated. At this juncture, the diminu-
tion of angiogenic forces may be sufficient enough
that the otherwise ineffectual squalamine (if used in
the absence of hormone-ablation) is consequently ren-
dered potent. Alternatively, during the immediate post-
orchiectomy rejuvenated proliferative phase (when
stromal-mediated and autonomous epithelial tumor cell
growth is actively acquiring hormone independence)
the cellular and vascular architecture may become
somewhat pliable and plastic, predisposing these pre-
carious cells to either anti-angiogenic or cytotoxic
effects of squalamine.

These interesting observations and speculations
have led us to develop the following hypothesis:
that the effectiveness of anti-angiogenic agents can
be increased when applied coincident with other
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therapeutic interventions that injure components of the
stromal-epithelial milieu. This premise is particularly
plausible considering that most pro-angiogenic factors
are Jocated within the stromal milien, either as soluble
or ECM-bound factors, which affects survival of tumor
epithelium, .

Tumor-stromal interactions and angiogenesis

The outcome of a patient with prostate cancer
ultimately depends upon the tumor’s capacity for un-
hindered growth, local invasion, and the establish-
ment of distant metastasis. Local factors, produced

- by mesenchyme, epithelial cells, or as a consequence
- of bi-directional mesenchymal-epithelial interactions

between prostate tumor and stromal cells, are necessary
for such proliferative, invasive, and migratory events

- [14].

Numerous cytokines and growth factors have been
implicated in either enhancing or impairing a given
prostate tumor’s inherent tumorigenic and metastatic
phenotype [15]. While some actdirectly upon the tumor
cells, others influence prostate tumor cell prolifera-
tion by modulating their interactions with the extra-
cellular matrix interactions through either soluble or
matrix-associated signaling. This can significantly alter
tumor cell heterogeneity with the propensity of select-

ing androgen-independent and metastatic variants.

Angiogenesis -
Angiogenesis refers to the formation of new blood
vessels from pre-existing, nascent vasculature. It is a
multistep sequential process involving the recruitment
and proliferation of endothelial cells, their subsequent
migration to the tumor mass, morphogenesis into a
tubular structure, and maturation into a stable struc-
ture [16,17]. It is important to note that the structure
of tumor vessels differ from those of normal tissues,
especially with regard to cellular composition, tissue
integrity, vascular permeability, and regulation of cell
proliferation and apoptosis [18]. It is presumed that
these many differences may impart selective suscepti-
bility of tumor vessels to the effects of anti-angiogenic
agents.

The establishment and maintenance of such a vas-
cular supply is imperative to prostate carcinogenesis
and involves the cooperation of a variety of molecules
either constituting or inhabiting the ECM. A variety of




Recent studies report that up to 50 percent of patients
who were thought to have organ-confined lesions were
discovered to be understaged subsequent to surgery
[43-45]. As aresult, the majority of men with prostate
cancer will eventually develop disseminated disease
[46]. In addition to causing severe pain and morbid-
ity, such metastatic disease is the primary cause of
death in men with prostate cancer [47]. Androgen
ablation therapy is the most widely accepted ther-
apy for men with metastatic cancer. Because of its
limited duration, however, certain chemotherapeutic
agents have been incorporated in the treatment of
advanced, hormone-refractory disease. Furthermore,
radiation therapy (with or without hormonal therapy)
is commonly used to treat locally-invasive lesions that
are felt to be incurable by surgical means.

With regard to prostate cancer, androgen ablation
. therapy, chemotherapy, and radiation therapy share
two common traits. First, by themselves, they custom-
arily behave as temporizing agents resulting in dis-
ease remission, but are generally ineffective in curing
advanced disease. Second, in addition to directly dam-
aging prostate cancer cells, each of these treatment
modalities induces injury to the surrounding stroma
and extracellular matrix. In fact, studies demonstrat-
ing improved outcomes in men with prostate cancer
after treatment with combined radiation and andro-
gen ablation therapy attribute these findings, in part,
to the resultant interference with the stromal-epithelial
relationship [48]. Furthermore, p53, which can act as
a radiosensitizer, may enhance the efficacy of radia-
tion therapy via its anti-angiogenic properties, such as
inducing expression of the anti-angiogenic ECM com-
ponent, thrombospondin-1 [49,50]. Because of their
individual and independent abilities to injure compo-
nents of the extracellular milieu, androgen ablation

therapy, chemotherapy, and radiation therapy are ideal -

therapeutic approaches to investigate for use in concert
with anti-angiogenic agents to treat men with, or at risk
for developing, advanced prostate cancer.

Taking all three of these treatment modalities into
consideration, we can now reiterate our hypotheses
as to how androgen ablation therapy, chemotherapy,
and radiation therapy may induce sufficient injury to
the stromal-epithelial environment that the effects of
the subsequent utilization of anti-angiogenic agents
would be potentiated. First, damage to the homeostatic
cellular components of the stromal-epithelial milieu
might decrease, or even completely suppress, the secre-
tion of soluble pro-angiogenic factors and intracellular
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signaling of pro-angiogenic components, inhibiting
many of the steps required for neovascularization. Such
alterations in this constituency could greatly increase
the sensitivity of the tumor to anti-angiogenic ther-
apy. Second, injury to the vascular endothelial cells
within the stroma could result in the immediate destruc-
tion of the tumor vasculature (resulting in the cessa-
tion of blood flow to the cancer cells) or weaken the
vessels sufficiently that their susceptibility to attack
by a second (anti-angiogenic) agent is increased. Fur-
thermore, damage to established vessels might induce
the formation of new vasculature to nourish and sus-
tain both the tumor mass and the surrounding tissues,
or alter the phenotype incipient vasculature so that it
acquires the more immature characteristics of newer
vessels. It is generally accepted that these younger,
more immature vessels are most-susceptible to anti-
angiogenic insult [51]. Third, immediately following

. intervention, some stromal and epithelial tumor cells

are likely to overcome their injuries and begin to initi-
ate repair pathways, in which they recapitulate a phe-
notypically younger and more unstable configuration. -
As the cellular architecture becomes increasingly pre-
carious, these cells are more apt to be affected by the
anti-angiogenic agents.

Androgen ablation therapy

Our data from the LNCaP-castrate xenograft model
confirmed that squalamine’s actions were most potent
on the freshly sprouting, immature blood vessels
that, we believe, developed during a rejuvenated
proliferative phase of those prostate tumor cells acquir-
ing hormone independence. The effect was indepen-
dent of serum VEGF levels. There is ample evidence
that androgen application can stimulate vasculogenesis
whereas androgen deprivation can inhibit neovascular-
ization, allegedly the result of increased or decreased
VEGF production (respectively). Folkman has demon-
strated that VEGF production by LNCaP cells is
under tight regulation by androgen and that andro-
gen withdrawal inhibited hypoxic induction of VEGF
[52]. Isaacs and associates have demonstrated that the
activity of Linomide, an oral anti-angiogenic agent
which has demonstrated effectiveness in suppressing
human prostate cancer in preclinical animal studies,
was potentiated by concurrent androgen ablation, pre-
sumably due to down-regulation of VEGF [30].

It was recently demonstrated that prostate gland
growth in a rat model was regulated by the vascular




of anti-angiogenic agents. By cyclically applying and
withdrawing androgen, intermittent androgen blockade
systematically injures tamor and vascular cells over a
prolonged period of time. This repeated stress should
prime them for the actions of an anti-angiogenic agent,
resulting in the destruction of both tumor cells and the
surrounding stroma.

Chemotherapy and radiation therapy

External beam radiotherapy, as well as brachyther-
apy, is frequently applied to the treatment of local and
locally-advanced prostate cancer. Furthermore, radia-
tion therapy is commonly used to treat symptomatic
metastases. Radiation induces significant injury to both
tumor and stromal cells [61,62]. There is often scar-
ring and destruction of nascent vasculature, as well
as damage to the surrounding stromal and ECM com-
ponents. In both situations, much akin to androgen
ablation therapy, the stromal—epithelial milieu initially
experiences significant injury with damage to stromal
cells as well as pro-angiogenic signals. With time,
however, these cells attempt to repair the radiation-
induced damage, and the stromal-epithelial compart-
ments undergo neovascularization with the potential to
support a tumor recurrence. Similarly, applying taxol
and estramustine, two currently used agents in prostate
disease and as a paradigm for other chemotherapeutic
regimens, will similarly induce injury of both endothe-
lial and epithelial tumor cells [63,64]. We propose
that the application of an anti-angiogenic agent coinci-
dent with radio- or chemotherapy induced injury could
inhibit stromal neovascularization and prevent tumor
recurrence.

Concluding remarks

Anti-angiogenic agents have shown promise in sev-
eral preclinical studies of prostate cancer. In our
own experience squalamine, an aminosterol with anti-
angiogenic properties, has demonstrated effectiveness
when applied concomitant with castration. As many
of the pro-angiogenic influences present in prostate
carcinogenesis reside with the stromal-tumor cell-
ECM environment, it is not surprising that castration,
which induces widespread damage within the stroma
(in addition to having direct cytotoxic effects), would
potentiate the activity of an anti-angiogenic agent. In
this commentary, we speculate that the potency of

313

anti-angiogenic agents will be most pronounced when
applied in conjunction with other therapeutic modali-
ties that maximally injure the stromal and ECM. For
now, this includes intermittent androgen suppression,

radiation therapy, and chemotherapy, but may, with
time, be applicable to gene therapy and novel molec-
ular approaches being developed for the treatment of
both localized and advanced human prostate cancer.
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